Question

A spherical surface of radius of curvature R, separates air (refractive index 1.0) from glass (refractive index 1.5). The centre of curvature is in the glass. A point object P placed in air is found to have a real image Q in the glass. The line PQ cuts the surface at a point O and PO = OQ. The distance PO is equal to :

A 5R		
B 3R		
C 2R		
D 1.5R		

Solution

Correct option is A) Given, PO = OQ

 \Rightarrow u = v

We know

 $\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$ $\Rightarrow \frac{\mu_2}{\nu} - \frac{\mu_1}{-\mu} = \frac{\mu_2 - \mu_1}{R}$ $\Rightarrow \frac{\mu_2 + \mu_1}{V} = \frac{\mu_2 - \mu_1}{R}$ $\Rightarrow \frac{1.5+1}{v} = \frac{1.5-1}{R}$ $\Rightarrow \frac{2.5}{v} = \frac{0.5}{R}$ \Rightarrow v = $\frac{2.5R}{0.5}$

OP = OQ = u = v = 5R

v = 5R